Zero Biasing and a Discrete Central Limit Theorem by Larry Goldstein
نویسنده
چکیده
University of Southern California and University of Melbourne We introduce a new family of distributions to approximate P(W ∈A) for A ⊂ {. . . ,−2,−1,0,1,2, . . .} and W a sum of independent integer-valued random variables ξ1, ξ2, . . . , ξn with finite second moments, where, with large probability, W is not concentrated on a lattice of span greater than 1. The well-known Berry–Esseen theorem states that, for Z a normal random variable with mean E(W) and variance Var(W), P(Z ∈ A) provides a good approximation to P(W ∈ A) for A of the form (−∞, x]. However, for more general A, such as the set of all even numbers, the normal approximation becomes unsatisfactory and it is desirable to have an appropriate discrete, nonnormal distribution which approximates W in total variation, and a discrete version of the Berry–Esseen theorem to bound the error. In this paper, using the concept of zero biasing for discrete random variables (cf. Goldstein and Reinert [J. Theoret. Probab. 18 (2005) 237–260]), we introduce a new family of discrete distributions and provide a discrete version of the Berry–Esseen theorem showing how members of the family approximate the distribution of a sum W of integer-valued variables in total variation.
منابع مشابه
Zero Biasing and a Discrete Central Limit Theorem
We introduce a new family of distributions to approximate IP(W ∈ A) for A ⊂ {· · · ,−2,−1, 0, 1, 2, · · · } and W a sum of independent integer-valued random variables ξ1, ξ2, · · · , ξn with finite second moments, where with large probability W is not concentrated on a lattice of span greater than 1. The well-known Berry–Esseen theorem states that for Z a normal random variable with mean IE(W )...
متن کامل2 1 N ov 2 00 5 Berry Esseen Bounds for Combinatorial Central Limit Theorems and Pattern Occurrences , using Zero and Size Biasing ∗ † Larry Goldstein University of Southern California
Berry Esseen type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated with an application to combinatorial central limit theorems where the random permutation has either the uniform distribution or one which is constant over permutations with the same cycle type and having no fixed points. The size biasing bounds ...
متن کاملBerry–esseen Bounds for Combinatorial Central Limit Theorems and Pattern Occurrences, Using Zero and Size Biasing
Berry–Esseen-type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated in an application to combinatorial central limit theorems in which the random permutation has either the uniform distribution or one that is constant over permutations with the same cycle type, with no fixed points. The size biasing bounds are a...
متن کاملBerry Esseen Bounds for Combinatorial Central Limit
Berry Esseen type bounds to the normal, based on zeroand size-bias couplings, are derived using Stein’s method. The zero biasing bounds are illustrated with an application to combinatorial central limit theorems where the random permutation has either the uniform distribution or one which is constant over permutations with the same cycle type and having no fixed points. The size biasing bounds ...
متن کاملBOUNDS ON THE CONSTANT IN THE MEAN CENTRAL LIMIT THEOREM BY LARRY GOLDSTEIN University of Southern California
Let X 1 ,. .. , X n be independent with zero means, finite variances σ 2 1 ,. .. , σ 2 n and finite absolute third moments. Let F n be the distribution function of (X 1 + · · · + X n)/σ , where σ 2 = n i=1 σ 2 i , and that of the standard normal. The L 1-distance between F n and then satisfies
متن کامل